Performance Analysis when adding a product to the receipt

We used Profiler and Timeline in Chrome Developer Tools to detect where the
application is spending more time when adding a product to the receipt.

As a general rule, all the SQL Transactions are the most expensive transactions of the
application, but we detected two main points to analyze:

- Calculate Gross with the discounts.
- Calculate Taxes for each line.

In the following Slides you can see the calculation of taxes in the timeline:

Performance Analysis when adding a product to the receipt

We used Profiler and Timeline in Chrome Developer Tools to detect where the application is spending more time when adding a product to the receipt.

As a general rule, all the SQL Transactions are the most expensive transactions of the application, but we detected two main points to analyze:

- Calculate Gross with the discounts.
- Calculate Taxes for each line.

In the following Slides you can see the calculation of taxes in the timeline:

Developer Tools - http://localhost:8080/openbravo/web/org.openbravo.retail.posterminal/?terminal=VBS-1
‘Q Elements Network Sources | Timeline| Profiles Resources Audits Console

©3 0695 >= % M,

®@ O V¥ ¥ Il Stacks @ Memory
Filter All v @ Loading ¥ Scripting @ Rendering @ Painting
l 1 1 - [[_l l 3045
bk ottt ottt PR | A—
' CE T ETTTRE ' ' 1| PO e T b e T

© Function Call (b1f838428...
© Function Call (b1f838428...
© Function Call (b1f838428...
© Function Call (b1f838428...
» O Event (mouseup)
» © Event (click)
» & Timer Fired (938)]
© Function Call (b1f838428... 0
v © Function Call (b1f83842... i
© Function Call (InjectedSc... 0
o Function Call (InjectedSc... 0
0
0 GC Event (13.8 MB collec...
» O Event (mousemove)

>
» 0 Event (mousemove) > I
© Function Call (b1f838428... 0
© Function Call (b1f838428... 0
» 0 Event (mousemove) > I
» O Function Call (b1f838428... > I
» O Function Call (b1f838428... > [
MEMORY

M Used JS Heap [64555184:9168

: ’_J/’_l_,_

Function Call | Details

Self Time: 0.088 ms
Start Time: 3.64 s

. Location: InjectedScript:l
SIS Call Stack:

processConsoleLevel @ mm&a&za&zmmmmm&a&u_w:w&

OB.warn @

hookManager.executeHooks @ b1f83842892ba77a76c66d366f09d937_ WebP0S,.js:3154
10.088 ms Scripting enyo.kind.renderTotal @ h1f83842892ha77a76c66d366f09d937 WebP0S, js:24931

(anonymous function) @ b1f83842892ba77a76c66d366f09d937 WebP0S,js:25188

Backbone.Events.trigger @ backbone-0,9,2,js:163

_.extend.change @ backbone-0,9.,2,js:473

_.extend.set @ backbone-0,9,2,js:314

(anonymous function) @

b1183842892ba77a76c66d366f09d937 WebP0S, js:16228
(anonymous function) @ b1f83842892ba77376c66d366f09d937 WebP0S,is:23755

Performance Analysis when adding a product to the receipt

As you can see there is an operation that is costing 117.265 ms:
Location: b1f83842892ba77a76c66d366f09d937_WebPOS.js:1702

After adding a line to the receipt and before rendering the total in the green payment button, the system recalculates taxes
... this.calculateTaxes

...and after calculating taxes, the hook OB.UTIL.HookManager.executeHooks('OBPOS_FindTaxRate’) is executed...

...and here is where it spends a lot of time, in OBPOS_FindTaxRate hook’s callback: executing this query:

OB.Dal.query(OB.Model.TaxRate, args.sql, [], function (coll, args)

See next slide to get a zoom into the tax calculation timing.

Performance Analysis when adding a product to the receipt

As you can see there is an operation that is costing 117.265 ms:
Location: b1f83842892ba77a76c66d366f09d937_WebPOS.js:1702

After adding a line to the receipt and before rendering the total in the green payment button, the system recalculates taxes
… this.calculateTaxes
…and after calculating taxes, the hook OB.UTIL.HookManager.executeHooks('OBPOS_FindTaxRate’) is executed…
…and here is where it spends a lot of time, in OBPOS_FindTaxRate hook’s callback: executing this query:

OB.Dal.query(OB.Model.TaxRate, args.sql, [], function (coll, args)

See next slide to get a zoom into the tax calculation timing.

Developer Tools - hitp://localhost:8080/openbravo/web/org.openbravo.retail.posterminal/?terminal=VBS-1

Q Elements Network SourcesHiiml'n-‘ Profiles Resources Audits Console 03 0695 >= £ H %
® O WV ¥ Il ®@stacks @Memory

Filter All v @ Loading ¥ Scripting @ Rendering @ Painting

500 ms| 1000 ms| 1500 ms| 2000 ms | 2500 msl | 3000 ms | 3500 ms| 4000 ms| 4500 ms| 5000 ms | 5500 ms | 6000 ms| 6500 ms| 7000 ms| 7500 ms| 8000 ms 8500 ms | 9000 ms|

(O ATt 11N M CACCRETY e RO ECTACACAE | T
| 100D OO 0 A A

I B |00 I I | (|0 0 U | 1 A 1 N LI I | | | |
61.6 MB - 88.4 MB e 1 L 1 L

RECORDS ———2510 0 5 40 5 60 o 30 $6 660 616 620 630 640 2650 ms 26601

O Function Call (b1f838428... B
v © Function Call (b1f83842... = v
© Function Call (InjectedSc... 1]
© Function Call (InjectedSc... 0
© Function Call (InjectedSc... 1]
o GC Event (14.0 MB collec... (]
» 0 Event (mousemove)
» O Event (mousemove)
O Function Call (b1f838428... 8
O Function Call (b1f838428... B
» 0 Event (mousedown)
O Function Call (b1f838428... 0
O Function Call (b1f838428... 0
O Function Call (b1f838428... 0
O Function Call (b1f838428... B

MEMORY
Il Used JS Heap [65557720:7729

B Documents [1:1]
ey

Selected Range | Details

Range: 2.50s - 2.66 s

!

158.205 ms

[l 4.609 ms Loading
[[1122.494 ms Scripting
[9.559 ms Rendering
[1.577 ms Painting

0D 70D svmaer Ntlan.

