Performance Analysis when adding a product to the receipt

We used Profiler and Timeline in Chrome Developer Tools to detect where the
application is spending more time when adding a product to the receipt.

As a general rule, all the SQL Transactions are the most expensive transactions of the
application, but we detected two main points to analyze:

- Calculate Gross with the discounts.
- Calculate Taxes for each line.

In the following Slides you can see the calculation of taxes in the timeline:
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Performance Analysis when adding a product to the receipt

As you can see there is an operation that is costing 117.265 ms:
Location: b1f83842892ba77a76c66d366f09d937_WebPOS.js:1702

After adding a line to the receipt and before rendering the total in the green payment button, the system recalculates taxes
... this.calculateTaxes

...and after calculating taxes, the hook OB.UTIL.HookManager.executeHooks('OBPOS_FindTaxRate’) is executed...

...and here is where it spends a lot of time, in OBPOS_FindTaxRate hook’s callback: executing this query:

OB.Dal.query(OB.Model.TaxRate, args.sql, [], function (coll, args)

See next slide to get a zoom into the tax calculation timing.
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